Chapter 8.1 Introduction

Fig. 8-1
Integrating unit transfer function G(s)
Ti -integrating time
is a single Integrating unit parameter–>p.8.4.
Don’t you know integration and differentiation? Don’t bother yourself. Your job is only connotation step response y(t) with the Ti parameter.

Chapter 8.2  Virtual potentiometer–>x(t)  bargraf–>y(t)
Call desktop/PID/01_podstawowe_człony_dynamiczne/03_człon_całkujący/01_całkujący_suwak_bargraf.zcos

Fig. 8-2
Push “start”.
Move Tk Source and BARXY windows and you see both digital meters. Intial virtual potentiometer value=0 and y(t)=0.
Set x(t)=0.025. The y(t) is rising with the constant speed. Double the x(t) up to x(t)=0.05. The y(t) is rising with the doubled speed.
Set x(t)=0. You have to use digital meter here.  The  y(t) comes to a stop. Note that x(t)=0 and y(t) is nonzero. It’s typical for integrating  unit.
Set x(t)=-0.025 
Set x(t)=-0.05
Repeat experiments with the Ti=0.5 sec and Ti=2 sec and make conclusions.
How to change parameter Ti ? See Fig. 7-4 and Fig. 7-5 in the previous chapter.

Chapter 8.3  Virtual potentiometer–>x(t)  oscilloscope–>y(t)
Call Desktop/PID/01_podstawowe_człony_dynamiczne/03_człon_całkujący/02_całkujący_suwak_oscyloskop.zcos
Fig. 8-4
Signal 0 draws y=0 line
Push “start” and make x(t) as previous.
Fig. 8-5
Make x(t) as previous and make conclusions.

Chapter 8.4  step generator–>x(t)  oscilloscope–>y(t)
The step generator enables  more accurate analysis than a virtual potentiometer.
Call Desktop/PID/01_podstawowe_człony_dynamiczne/03_człon_całkujący/03_całkujący_1_skok_oscyloskop.zcos
Fig. 8-6
Wciśnij “start”
Fig. 8-7
Integrating unit response when x(t)=0.1.
There is state x(t)=y(t) after time t=Ti=1 sec.
Change the parameter Ti for Ti=2 sec. and repeat the experiment.
We don’t  call a new block diagram but:
– close the oscilloscope window
– change Ti=1 sec. –>Ti=2 sec.
– click “start”
Fig. 8-8
The output y(t) is double slower now!
The new integrating time Ti=2 sec. is according to Ti definition on the  Fig. 8-7.

Chapter 8.5  “2 steps” generator–>x(t)  oscilloscope–>y(t)
Call Desktop/PID/01_podstawowe_człony_dynamiczne/03_człon_całkujący/04_całkujący_2_skoki_oscyloskop.zcos
Fig. 8-9

Click “Start”8-10a

Fig. 8-10
y(t) speed double rises when x(t) double rises.

Chapter 8.5  “4 steps” generator–>x(t)  oscilloscope–>y(t)
Call Desktop/PID/01_podstawowe_człony_dynamiczne/03_człon_całkujący/05_całkujący_4_skoki_oscyloskop.zcos
Fig. 8-11
Click “Start”
Fig. 8-12
The conclusions is obvious. y(t) speed rises when x(t) speed rises.
The “4 steps” x(t) signal is similar to linear function  x(t)=t and y(t) signal is similar to parabola.
Will be the y(t) parabola when x(t) is  linear function  x(t)=t ?

Chapter 8.7  Ramp generator–>x(t)  oscilloscope–>y(t)
Call Desktop/PID/01_podstawowe_człony_dynamiczne/03_człon_całkujący/06_całkujący_pila_oscyloskop.zcos

Fig. 8-13
Wciśnij “Start”
Fig. 8-14
y(t) is  a parabola!
Math says that
Fig. 8-15
The conclusion is that the theory is acc. to practice.

Chapter 8.8  “positive and negative  step” generator–>x(t)  oscilloscope–>y(t)
It’s more excellent Fig. 8-5 experiment version
Call Desktop/PID/01_podstawowe_człony_dynamiczne/03_człon_całkujący/ 07_całkujący_skok_dodatni_ujemny_oscyloskop
Fig. 8-16
Click “Start”
Fig. 8-17
It similar to volume TV pilot controller. But our “pilot” is better. We can speed control and change its sign!
The electrical actuator is the other examle. x(t)–>input motor voltage and y(t)–>actuator level position

Chapter 8.9  Dirac pulse generator–>x(t)  oscilloscope–>y(t)
Call Desktop/PID/01_podstawowe_człony_dynamiczne/03_człon_całkujący/08_całkujący_dirac_oscyloskop.zcos

Fig. 8-18
Ideal Dirac pulse doesn’t exist. Our Dirac is  a 0.01 sec. pulse with the 100 amplitude.
Click “Start”
Dirac “loaded” in a flash the y(t) up to y(t)=1 value. This y(t)=1 though x(t)=0 after t=3sec. It’s like ideal condenser loading process!

Chapter 8.10 Inegrating units examples
Input x(t) – loading current
Output y(t) – condenser voltage

Filling the tank without hole.
We assume that the tank is a cuboid.
Input x(t) – water flow Q(t) to the tank
Output y(t) – water tank level h(t)

Electrical actuator.
We assume ideal motor and transmission.
Input x(t) – motor voltage
Output y(t) – actuator position angle

One thought on “Chapter 8 Integrating Unit

  1. Hey very cool website!! Man .. Beautiful .. Wonderful .. I’ll bookmark your web site and take the feeds also…I’m happy to search out so many helpful information right here within the submit, we need develop extra techniques on this regard, thanks for sharing. . . . . .

Leave a Reply

Your email address will not be published. Required fields are marked *