Chapter 12.1 Introduction
12-1
Fig. 12-1
Integrating unit with inertia transfer function
Do you remember an integrating unit? Step type input x(t) caused y(t) increase with steady speed up to infinity. I emphasise. With steady speed. Integrating unit with inertia causes y(t) increase with up to infinity too, but in different from it way.  Step type input x(t) causes “scorch” from speed v=0 up to steady v=const. It’s more exactly electrical actuator approximation than an ideal integrating unit.

Chapter 12.1 T=5 sec, step x(t) from the virtual potentiometer, y(t) on the bargraf
Call Desktop/PID/01_podstawowe_człony_dynamiczne/07_calkujacy_z_inercja/01_całkujący_z_inercją_bargraf.zcos
12-2a
Fig. 12-2
Click “start”.
12-3a
Fig. 12-3
Move the windows to see 2 digital meters. Virtual potentiometer is set for 0 at the beginning. Set x(t)=+max. Output y(t) is similar to integral unit but the initial y(t) speed=0. Try to stop the y(t). You have to set x(t)=0. The digital meter will be helpful here. When you play it (the y(t) is standing –>no decrease and increase), you see the typical PI or PID attribute. There is nonzero output y(t) value, though input x(t)=0!

Chapter 12.3 k=1 T=3sec x(t) step generator and  y(t) oscilloscope.
Call Desktop/PID/01_podstawowe_człony_dynamiczne/07_calkujacy_z_inercja/02_całkujący_z_inercją_skok_oscyloskop.zcos
12-4a
Fig. 12-4
Integrating  unit with inertia = serial connected integrating and inertia units
Click “Start”
12-5a
Fig. 12-5
Blue yc(t) is after the integrating unit and red y(t) is an output. Do you observe y(t) “scorch” effect at the begining?
I propose the undermentioned objects testing:

12-6
FIg. 12-6
We will not call a new block diagram but change the patameters in the existing one. Move right mouse and change k and T parameters.
12-7a
Fig. 12-7
Your job are the answers for questions.
What does k do?
What does T do?

Chapter 12.4 k=1 T=3sec x(t) single rectangular pulse generator and  y(t) oscilloscope.
Wywołaj Pulpit/PID/01_podstawowe_człony_dynamiczne/07_calkujacy_z_inercja/03_całkujący_z_inercją_1_impuls_oscyloskop.zcos
12-8a
Fig. 12-8
x(t)-single rectangular pulse
Click “Start”
12-9
Fig. 12-9
x(t)=input
voltage
y(t)= actuator position-angle (valve position for example)
It’s more exactly electrical actuator approximation than ideal integral unit–>yc(t). T is mainly mechanical innertia and a little a electrical motor inertia -cables induction  L. It vitiates actuator quality.

Chapter 12.5  k=1 T=3 sec x(t) “+ and -” pulse generator x(t) and  y(t) oscilloscope.
Call Desktop/PID/01_podstawowe_człony_dynamiczne/07_calkujacy_z_inercja/04_całkujący_z_inercją_2_impulsy_oscyloskop.zcos
12-10a
Fig. 12-10
Click “Start”
12-11
Fig. 12-11
Blue yc(t)
-ideal actuator without inertia (integrating unit)
Red y(t)-real actuator with inertia (integrating with inertia unit). The actuator is “seeking” his valve position. First it find its pos. y(t)=8 and the controller “made a correction” to y(t)=4 then.

Chapter 12.1 Introduction
12-1
Fig. 12-1
Integrating unit with inertia transfer function
Do you remember an integrating unit? Step type input x(t) caused y(t) increase with steady speed up to infinity. I emphasise. With steady speed. Integrating unit with inertia causes y(t) increase with up to infinity too, but in different from it way.  Step type input x(t) causes “scorch” from speed v=0 up to steady v=const. It’s more exactly electrical actuator approximation than an ideal integrating unit.

Chapter 12.1 T=5 sec, step x(t) from the virtual potentiometer, y(t) on the bargraf
Call Desktop/PID/01_podstawowe_człony_dynamiczne/07_calkujacy_z_inercja/01_całkujący_z_inercją_bargraf.zcos
12-2a
Fig. 12-2
Click “start”.
12-3a
Fig. 12-3
Move the windows to see 2 digital meters. Virtual potentiometer is set for 0 at the beginning. Set x(t)=+max. Output y(t) is similar to integral unit but the initial y(t) speed=0. Try to stop the y(t). You have to set x(t)=0. The digital meter will be helpful here. When you play it (the y(t) is standing, no decrease and increase), you see the typical PI or PID attribute. There is nonzero output y(t) value, though input x(t)=0!

Chapter 12.3 k=1 T=3sec x(t) step generator and  y(t) oscilloscope.
Call Desktop/PID/01_podstawowe_człony_dynamiczne/07_calkujacy_z_inercja/02_całkujący_z_inercją_skok_oscyloskop.zcos
12-4a
Fig. 12-4
Integrating  unit with inertia = serial connected integrating and inertia units
Click “Start”
12-5a
Fig. 12-5
Blue yc(t) is after the integrating unit and red y(t) is an output. Do you observe y(t) “scorch” effect at the begining?
I propose the undermentioned objects testing:

12-6
FIg. 12-6
We will not call a new block diagram but change the patameters in the existing one. Move right mouse and change k and T parameters.
12-7a
Fig. 12-7
Your job are the answers for questions.
What does k do?
What does T do?

Chapter 12.4 k=1 T=3sec x(t) single rectangular pulse generator and  y(t) oscilloscope.
Wywołaj Pulpit/PID/01_podstawowe_człony_dynamiczne/07_calkujacy_z_inercja/03_całkujący_z_inercją_1_impuls_oscyloskop.zcos
12-8a
Fig. 12-8
x(t)-single rectangular pulse
Click “Start”
12-9
Fig. 12-9
x(t)=input
voltage
y(t)= actuator position-angle (valve position for example)
It’s more exactly electrical actuator approximation than ideal integral unit–>yc(t). T is mainly mechanical innertia and a little a electrical motor inertia -cables induction  L. It vitiates actuator quality.

Chapter 12.5  k=1 T=3 sec x(t) “+ and -” pulse generator x(t) and  y(t) oscilloscope.
Call Desktop/PID/01_podstawowe_człony_dynamiczne/07_calkujacy_z_inercja/04_całkujący_z_inercją_2_impulsy_oscyloskop.zcos
12-10a
Fig. 12-10
Click “Start”
12-11
Fig. 12-11
Blue yc(t)
-ideal actuator without inertia (integrating unit)
Red y(t)-real actuator with inertia (integrating with inertia unit). The actuator is “seeking” his valve position. First it find its pos. y(t)=8 and the controller “made a correction” to y(t)=4 then.

Leave a Reply

Your email address will not be published. Required fields are marked *